Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(1): 116-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38467549

RESUMO

Cardiac myosin binding protein C (cMyBP-C) is one of the essential control components of the myosin cross-bridge cycle. The C-terminal part of cMyBP-C is located on the surface of the thick filament, and its N-terminal part interacts with actin, myosin, and tropomyosin, affecting both kinetics of the ATP hydrolysis cycle and lifetime of the cross-bridge, as well as calcium regulation of the actin-myosin interaction, thereby modulating contractile function of myocardium. The role of cMyBP-C in atrial contraction has not been practically studied. We examined effect of the N-terminal C0-C1-m-C2 (C0-C2) fragment of cMyBP-C on actin-myosin interaction using ventricular and atrial myosin in an in vitro motility assay. The C0-C2 fragment of cMyBP-C significantly reduced the maximum sliding velocity of thin filaments on both myosin isoforms and increased the calcium sensitivity of the actin-myosin interaction. The C0-C2 fragment had different effects on the kinetics of ATP and ADP exchange, increasing the affinity of ventricular myosin for ADP and decreasing the affinity of atrial myosin. The effect of the C0-C2 fragment on the activation of the thin filament depended on the myosin isoforms. Atrial myosin activates the thin filament less than ventricular myosin, and the C0-C2 fragment makes these differences in the myosin isoforms more pronounced.


Assuntos
Actinas , Proteína C , Actinas/metabolismo , Proteína C/metabolismo , Proteínas de Transporte/metabolismo , Cálcio/metabolismo , Miosinas Atriais , Miosinas Ventriculares/metabolismo , Miosinas/metabolismo , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Isoformas de Proteínas/metabolismo , Ligação Proteica
2.
Biomolecules ; 14(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38254685

RESUMO

Neurofilaments are neuron-specific proteins that belong to the intermediate filament (IFs) protein family, with the neurofilament light chain protein (NFL) being the most abundant. The IFs structure typically includes a central coiled-coil rod domain comprised of coils 1A, 1B, and 2, separated by linker regions. The thermal stability of the IF molecule plays a crucial role in its ability for self-association. In the current study, we investigated the thermal stability of NFL coiled-coil domains by analyzing a set of recombinant domains and their fusions (NFL1B, NFL1A+1B, NFL2, NFL1B+2, and NFLROD) via circular dichroism spectroscopy and differential scanning calorimetry. The thermal stability of coiled-coil domains is evident in a wide range of temperatures, and thermal transition values (Tm) correspond well between isolated coiled-coil domains and full-length NFL. NFL1B has a Tm of 39.4 °C, and its' fusions, NFL1A+1B and NFL1B+2, have a Tm of 41.9 °C and 41.5 °C, respectively. However, in the case of NFL2, thermal denaturation includes at least two thermal transitions at 37.2 °C and 62.7 °C. These data indicate that the continuous α-helical structure of the coil 2 domain has parts with varied thermal stability. Among all the NFL fragments, only NFL2 underwent irreversible heat-induced denaturation. Together, these results unveil the origin of full-length NFL's thermal transitions, and reveal its domains structure and properties.


Assuntos
Filamentos Intermediários , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Varredura Diferencial de Calorimetria , Neurônios , Domínios Proteicos
3.
Arch Biochem Biophys ; 752: 109881, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38185233

RESUMO

Tropomyosin (Tpm) is a regulatory actin-binding protein involved in Ca2+ activation of contraction of striated muscle. In human slow skeletal muscles, two distinct Tpm isoforms, γ and ß, are present. They interact to form three types of dimeric Tpm molecules: γγ-homodimers, γß-heterodimers, or ßß-homodimers, and a majority of the molecules are present as γß-Tpm heterodimers. Point mutation R91P within the TPM3 gene encoding γ-Tpm is linked to the condition known as congenital fiber-type disproportion (CFTD), which is characterized by severe muscle weakness. Here, we investigated the influence of the R91P mutation in the γ-chain on the properties of the γß-Tpm heterodimer. We found that the R91P mutation impairs the functional properties of γß-Tpm heterodimer more severely than those of earlier studied γγ-Tpm homodimer carrying this mutation in both γ-chains. Since a significant part of Tpm molecules in slow skeletal muscle is present as γß-heterodimers, our results explain why this mutation leads to muscle weakness in CFTD.


Assuntos
Doenças Musculares , Tropomiosina , Humanos , Tropomiosina/química , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Mutação , Debilidade Muscular/metabolismo , Actinas/genética , Actinas/metabolismo
4.
Biochemistry (Mosc) ; 88(6): 801-809, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37748876

RESUMO

Tropomyosin (Tpm) is one of the most important partners of actin filament that largely determines its properties. In animal organisms, there are different isoforms of Tpm, which are believed to be involved in the regulation of various cellular functions. However, molecular mechanisms by which various Tpm cytoplasmic regulate of the functioning of actin filaments are still poorly understood. Here, we investigated the properties of Tpm2.1 and Tpm4.1 isoforms and compared them to each other and to more extensively studied Tpm isoforms. Tpm2.1 and Tpm4.1 were very similar in their affinity to F-actin, thermal stability, and resistance to limited proteolysis by trypsin, but differed markedly in the viscosity of their solutions and thermal stability of their complexes with F-actin. The main difference of Tpm2.1 and Tpm4.1 from other Tpm isoforms (e.g., Tpm1.6 and Tpm1.7) was their extremely low thermal stability as measured by the CD and DSC methods. We suggested the possible causes of this instability based on comparing the amino acid sequences of Tpm4.1 and Tpm2.1 with the sequences of Tpm1.6 and Tpm1.7 isoforms, respectively, that have similar exon structure.


Assuntos
Actinas , Tropomiosina , Animais , Proteínas do Citoesqueleto , Isoformas de Proteínas , Sequência de Aminoácidos
5.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569730

RESUMO

We characterized a novel genetic variant c.292G > A (p.E98K) in the TPM1 gene encoding cardiac tropomyosin 1.1 isoform (Tpm1.1), found in a proband with a phenotype of complex cardiomyopathy with conduction dysfunction and slow progressive neuromuscular involvement. To understand the molecular mechanism by which this mutation impairs cardiac function, we produced recombinant Tpm1.1 carrying an E98K substitution and studied how this substitution affects the structure of the Tpm1.1 molecule and its functional properties. The results showed that the E98K substitution in the N-terminal part of the Tpm molecule significantly destabilizes the C-terminal part of Tpm, thus indicating a long-distance destabilizing effect of the substitution on the Tpm coiled-coil structure. The E98K substitution did not noticeably affect Tpm's affinity for F-actin but significantly impaired Tpm's regulatory properties. It increased the Ca2+ sensitivity of the sliding velocity of regulated thin filaments over cardiac myosin in an in vitro motility assay and caused an incomplete block of the thin filament sliding at low Ca2+ concentrations. The incomplete motility block in the absence of Ca2+ can be explained by the loosening of the Tpm interaction with troponin I (TnI), thus increasing Tpm mobility on the surface of an actin filament that partially unlocks the myosin binding sites. This hypothesis is supported by the molecular dynamics (MD) simulation that showed that the E98 Tpm residue is involved in hydrogen bonding with the C-terminal part of TnI. Thus, the results allowed us to explain the mechanism by which the E98K Tpm mutation impairs sarcomeric function and myocardial relaxation.


Assuntos
Cardiomiopatias , Tropomiosina , Humanos , Tropomiosina/metabolismo , Miocárdio/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Mutação , Cálcio/metabolismo
6.
Biochemistry (Mosc) ; 88(5): 610-620, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37331707

RESUMO

Effects of E90K, N98S, and A149V mutations in the light chain of neurofilaments (NFL) on the structure and thermal denaturation of the NFL molecule were investigated. By using circular dichroism spectroscopy, it was shown that these mutations did not lead to the changes in α-helical structure of NFL, but they caused noticeable effects on the stability of the molecule. We also identified calorimetric domains in the NFL structure by using differential scanning calorimetry. It was shown that the E90K replacement leads to the disappearance of the low-temperature thermal transition (domain 1). The mutations cause changes in the enthalpy of NFL domains melting, as well as lead to the significant changes in the melting temperatures (Tm) of some calorimetric domains. Thus, despite the fact that all these mutations are associated with the development of Charcot-Marie-Tooth neuropathy, and two of them are even located very close to each other in the coil 1A, they affect differently structure and stability of the NFL molecule.


Assuntos
Filamentos Intermediários , Proteínas , Filamentos Intermediários/metabolismo , Proteínas/metabolismo , Mutação , Desnaturação Proteica , Varredura Diferencial de Calorimetria , Dicroísmo Circular
7.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176047

RESUMO

In the myocardium, the TPM1 gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2). κTpm is the result of alternative splicing of the TPM1 gene. We studied the structural features of κTpm and its regulatory function in the atrial and ventricular myocardium using an in vitro motility assay. We tested the possibility of Tpm heterodimer formation from α- and κ-chains. Our result shows that the formation of ακTpm heterodimer is thermodynamically favorable, and in the myocardium, κTpm most likely exists as ακTpm heterodimer. Using circular dichroism, we compared the thermal unfolding of ααTpm, ακTpm, and κκTpm. κκTpm had the lowest stability, while the ακTpm was more stable than ααTpm. The differential scanning calorimetry results indicated that the thermal stability of the N-terminal part of κκTpm is much lower than that of ααTpm. The affinity of ααTpm and κκTpm to F-actin did not differ, and ακTpm interacted with F-actin significantly worse. The troponin T1 fragment enhanced the κκTpm and ακTpm affinity to F-actin. κκTpm differently affected the calcium regulation of the interaction of pig and rat ventricular myosin with the thin filament. With rat myosin, calcium sensitivity of thin filaments containing κκTpm was significantly lower than that with ααTpm and with pig myosin, and the sensitivity did not differ. Thin filaments containing κκTpm and ακTpm were better activated by pig atrial myosin than those containing ααTpm.


Assuntos
Actinas , Cálcio , Animais , Ratos , Suínos , Actinas/química , Cálcio/análise , Tropomiosina/genética , Tropomiosina/química , Citoesqueleto de Actina/química , Miosinas/análise
8.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36555368

RESUMO

Tropomyosin (Tpm) mutations cause inherited cardiac diseases such as hypertrophic and dilated cardiomyopathies. We applied various approaches to investigate the role of cardiac troponin (Tn) and especially the troponin T (TnT) in the pathogenic effects of Tpm cardiomyopathy-associated mutations M8R, K15N, A277V, M281T, and I284V located in the overlap junction of neighboring Tpm dimers. Using co-sedimentation assay and viscosity measurements, we showed that TnT1 (fragment of TnT) stabilizes the overlap junction of Tpm WT and all Tpm mutants studied except Tpm M8R. However, isothermal titration calorimetry (ITC) indicated that TnT1 binds Tpm WT and all Tpm mutants similarly. By using ITC, we measured the direct KD of the Tpm overlap region, N-end, and C-end binding to TnT1. The ITC data revealed that the Tpm C-end binds to TnT1 independently from the N-end, while N-end does not bind. Therefore, we suppose that Tpm M8R binds to TnT1 without forming the overlap junction. We also demonstrated the possible role of Tn isoform composition in the cardiomyopathy development caused by M8R mutation. TnT1 dose-dependently reduced the velocity of F-actin-Tpm filaments containing Tpm WT, Tpm A277V, and Tpm M281T mutants in an in vitro motility assay. All mutations impaired the calcium regulation of the actin-myosin interaction. The M281T and I284V mutations increased the calcium sensitivity, while the K15N and A277V mutations reduced it. The Tpm M8R, M281T, and I284V mutations under-inhibited the velocity at low calcium concentrations. Our results demonstrate that Tpm mutations likely implement their pathogenic effects through Tpm interaction with Tn, cardiac myosin, or other protein partners.


Assuntos
Cardiomiopatias , Tropomiosina , Troponina , Humanos , Actinas/metabolismo , Cálcio/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Mutação , Tropomiosina/genética , Troponina/genética , Troponina T/metabolismo
9.
Arch Biochem Biophys ; 710: 108999, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34339666

RESUMO

Tropomyosin (Tpm) is an actin-associated protein and key regulator of actin filament structure and dynamics in muscle and non-muscle cells where it participates in many vital processes. Human non-muscle cells produce many Tpm isoforms; however, little is known yet about their structural and functional properties. In the present work, we have applied various methods to investigate the properties of five low molecular weight Tpm isoforms (Tpm3.1, Tpm3.2, Tpm3.4, Tpm3.5, and Tpm3.7), the products of TPM3 gene, which significantly differ by alternatively spliced internal exon 6 (6a or 6b) and C-terminal exon 9 (9a, 9c or 9d). Our results clearly demonstrate that the properties of these Tpm isoforms are quite different depending on sequence variations in alternatively spliced regions of their molecules. These differences can be important in further studies to explain why these Tpm isoforms play a key role in organization and dynamics of the cytoskeleton.


Assuntos
Tropomiosina/química , Tropomiosina/genética , Actinas/química , Actinas/metabolismo , Animais , Humanos , Técnicas In Vitro , Peso Molecular , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Tropomiosina/metabolismo , Viscosidade
10.
Int J Biol Macromol ; 166: 424-434, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129908

RESUMO

We applied various methods to investigate how mutations S283D and S61D that mimic phosphorylation of tropomyosin (Tpm) affect structural and functional properties of cardiac Tpm carrying cardiomyopathy-associated mutations in different parts of its molecule. Using differential scanning calorimetry and molecular dynamics, we have shown that the S61D mutation (but not the S283 mutation) causes significant destabilization of the N-terminal part of the Tpm molecule independently of the absence or presence of cardiomyopathy-associated mutations. Our results obtained by cosedimentation of Tpm with F-actin demonstrated that both S283D and S61D mutations can reduce or even eliminate undesirable changes in Tpm affinity for F-actin caused by some cardiomyopathy-associated mutations. The results indicate that Tpm pseudo-phosphorylation by mutations S283D or S61D can rescue the effects of mutations in the TPM1 gene encoding a cardiac isoform of Tpm that lead to the development of such severe inherited heart diseases as hypertrophic or dilated cardiomyopathies.


Assuntos
Cardiomiopatia Dilatada/genética , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Tropomiosina/química , Humanos , Fosforilação , Conformação Proteica , Serina/genética , Tropomiosina/genética , Tropomiosina/metabolismo
11.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218166

RESUMO

Tropomyosin (Tpm) is one of the major actin-binding proteins that play a crucial role in the regulation of muscle contraction. The flexibility of the Tpm molecule is believed to be vital for its functioning, although its role and significance are under discussion. We choose two sites of the Tpm molecule that presumably have high flexibility and stabilized them with the A134L or E218L substitutions. Applying differential scanning calorimetry (DSC), molecular dynamics (MD), co-sedimentation, trypsin digestion, and in vitro motility assay, we characterized the properties of Tpm molecules with these substitutions. The A134L mutation prevented proteolysis of Tpm molecule by trypsin, and both substitutions increased the thermal stability of Tpm and its bending stiffness estimated from MD simulation. None of these mutations affected the primary binding of Tpm to F-actin; still, both of them increased the thermal stability of the actin-Tpm complex and maximal sliding velocity of regulated thin filaments in vitro at a saturating Ca2+ concentration. However, the mutations differently affected the Ca2+ sensitivity of the sliding velocity and pulling force produced by myosin heads. The data suggest that both regions of instability are essential for correct regulation and fine-tuning of Ca2+-dependent interaction of myosin heads with F-actin.


Assuntos
Substituição de Aminoácidos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Tropomiosina/genética , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Cálcio/química , Cálcio/metabolismo , Varredura Diferencial de Calorimetria , Humanos , Miosinas/química , Miosinas/metabolismo , Conformação Proteica , Estabilidade Proteica , Temperatura , Tropomiosina/química , Tropomiosina/metabolismo , Tripsina/metabolismo
12.
FASEB J ; 34(10): 13507-13520, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32797717

RESUMO

Several congenital myopathies of slow skeletal muscles are associated with mutations in the tropomyosin (Tpm) TPM3 gene. Tropomyosin is an actin-binding protein that plays a crucial role in the regulation of muscle contraction. Two Tpm isoforms, γ (Tpm3.12) and ß (Tpm2.2) are expressed in human slow skeletal muscles forming γγ-homodimers and γß-heterodimers of Tpm molecules. We applied various methods to investigate how myopathy-causing mutations M9R, E151A, and K169E in the Tpm γ-chain modify the structure-functional properties of Tpm dimers, and how this affects the muscle functioning. The results show that the features of γγ-Tpm and γß-Tpm with substitutions in the Tpm γ-chain vary significantly. The characteristics of the γγ-Tpm depend on whether these mutations located in only one or both γ-chains. The mechanism of the development of nemaline myopathy associated with the M9R mutation was revealed. At the molecular level, a cause-and-effect relationship has been established for the development of myopathy by the K169E mutation. Also, we described the structure-functional properties of the Tpm dimers with the E151A mutation, which explain muscle weakness linked to this substitution. The results demonstrate a diversity of the molecular mechanisms of myopathy pathogenesis induced by studied Tpm mutations.


Assuntos
Contração Muscular , Miopatias da Nemalina , Tropomiosina , Humanos , Modelos Moleculares , Mutação , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Isoformas de Proteínas , Multimerização Proteica , Tropomiosina/química , Tropomiosina/genética
13.
Biochem Biophys Res Commun ; 514(3): 613-617, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31072616

RESUMO

Tropomyosin (Tpm) is an α-helical coiled-coil protein dimer, which forms a continuous head-to-tail polymer along the actin filament. In striated muscles, Tpm plays an important role in the Ca2+-dependent regulation of muscle contraction. However, little is known about functional and especially structural properties of the numerous non-muscle Tpm isoforms. In the present work, we have applied circular dichroism (CD) and differential scanning calorimetry (DSC) to investigate thermal unfolding and domain structure of various non-muscle human Tpm isoforms. These isoforms, the products of two different genes, TPM1 and TPM3, also significantly differ by alternatively spliced exons: N-terminal exons 1a2b or 1b, internal exons 6a or 6b, and C-terminal exons 9a, 9c or 9d. Our results clearly demonstrate that structural properties of various non-muscle Tpm isoforms can be quite different depending on the presence of different alternatively spliced exons in their genes. These data show for the first time a significant difference in the thermal unfolding between muscle and non-muscle Tpm isoforms and indicate that replacement of alternatively spliced exons alters the stability of certain domains in the Tpm molecule.


Assuntos
Músculo Esquelético/metabolismo , Desdobramento de Proteína , Temperatura , Tropomiosina/química , Tropomiosina/metabolismo , Calorimetria , Varredura Diferencial de Calorimetria , Humanos , Peso Molecular , Neurônios/metabolismo , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Estrutura Secundária de Proteína
14.
Biochem Biophys Res Commun ; 508(3): 934-939, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30545627

RESUMO

Tropomyosin (Tpm) is an α-helical coiled-coil actin-binding protein that plays a key role in the Ca2+-regulated contraction of striated muscles. Two Tpm isoforms, α (Tpm 1.1) and ß (Tpm 2.2), are expressed in fast skeletal muscles. These Tpm isoforms can form either αα and ßß homodimers, or αß heterodimers. However, only αα-Tpm and αß-Tpm dimers are usually present in most of fast skeletal muscles, because ßß-homodimers are relatively unstable and cannot exist under physiologic conditions. Nevertheless, the most of previous studies of myopathy-causing mutations in the Tpm ß-chains were performed on the ßß-homodimers. In the present work, we applied different methods to investigate the effects of two myopathic mutations in the ß-chain, Q147P and K49del (i.e. deletion of Lys49), on structural and functional properties of Tpm αß-heterodimers and to compare them with the properties of ßß-homodimers carrying these mutations in both ß-chains. The results show that the properties of αß-Tpm heterodimers with these mutations in the ß-chain differ significantly from the properties of ßß-homodimers with the same substitutions in both ß-chains. This indicates that the αß-heterodimer is a more appropriate model for studying the effects of myopathic mutations in the ß-chain of Tpm than the ßß-homodimer which virtually does not exist in human skeletal muscles.


Assuntos
Mutação , Tropomiosina/genética , Actinas/metabolismo , Animais , Humanos , Doenças Musculares/genética , Multimerização Proteica , Desdobramento de Proteína , Coelhos , Tropomiosina/química , Tropomiosina/metabolismo
15.
Cell Stress Chaperones ; 22(4): 467-479, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28000086

RESUMO

The interaction of human small heat shock protein HspB1, its point mutants associated with distal hereditary motor neuropathy, and three other small heat shock proteins (HspB5, HspB6, HspB8) with the light component of neurofilaments (NFL) was analyzed by differential centrifugation, analytical ultracentrifugation, and fluorescent spectroscopy. The wild-type HspB1 decreased the quantity of NFL in pellets obtained after low- and high-speed centrifugation and increased the quantity of NFL remaining in the supernatant after high-speed centrifugation. Part of HspB1 was detected in the pellet of NFL after high-speed centrifugation, and at saturation, 1 mol of HspB1 monomer was bound per 2 mol of NFL. Point mutants of HspB1 associated with distal hereditary motor neuropathy (G84R, L99M, R140G, K141Q, and P182S) were almost as effective as the wild-type HspB1 in modulation of NFL assembly. At low ionic strength, HspB1 weakly interacted with NFL tetramers, and this interaction was increased upon salt-induced polymerization of NFL. HspB1 and HspB5 (αB-crystallin) decreased the rate of NFL polymerization measured by fluorescent spectroscopy. HspB6 (Hsp20) and HspB8 (Hsp22) were less effective than HspB1 (or HspB5) in modulation of NFL assembly. The data presented indicate that the small heat shock proteins affect NFL transition from tetramers to filaments, hydrodynamic properties of filaments, and their bundling and therefore probably modulate the formation of intermediate filament networks in neurons.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Filamentos Intermediários/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Proteínas de Choque Térmico Pequenas/genética , Humanos , Filamentos Intermediários/patologia , Chaperonas Moleculares , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Neurônios/metabolismo , Neurônios/patologia , Mutação Puntual , Mapas de Interação de Proteínas
16.
Arch Biochem Biophys ; 538(1): 16-24, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23948568

RESUMO

Some properties of G84R and L99M mutants of HspB1 associated with peripheral distal neuropathies were investigated. Homooligomers formed by these mutants are larger than those of the wild type HspB1. Large oligomers of G84R and L99M mutants have compromised stability and tend to dissociate at low protein concentration. G84R and L99M mutations promote phosphorylation-dependent dissociation of HspB1 oligomers without affecting kinetics of HspB1 phosphorylation by MAPKAP2 kinase. Both mutants weakly interact with HspB6 forming small heterooligomers and being unable to form large heterooligomers characteristic for the wild type HspB1. G84R and L99M mutants possess lower chaperone-like activity than the wild type HspB1 with several model substrates. We suggest that G84R mutation affects mobility and accessibility of the N-terminal domain thus modifying interdimer contacts in HspB1 oligomers. The L99M mutation is located within the hydrophobic core of the α-crystallin domain close to the key R140 residue, and could affect the dimer stability.


Assuntos
Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/genética , Neurônios Motores/metabolismo , Sequência de Aminoácidos , Dimerização , Proteínas de Choque Térmico HSP20/química , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares/química , Dados de Sequência Molecular , Mutação , Doenças do Sistema Nervoso/metabolismo , Fosforilação , Mutação Puntual , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , alfa-Cristalinas/química
17.
Biochimie ; 95(8): 1582-92, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23643870

RESUMO

Some physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathy were analyzed. Mutation K141Q did not affect intrinsic Trp fluorescence and interaction with hydrophobic probe bis-ANS, whereas mutation R140G decreased both intrinsic fluorescence and fluorescence of bis-ANS bound to HspB1. Both mutations decreased thermal stability of HspB1. Mutation R140G increased, whereas mutation K141Q decreased the rate of trypsinolysis of the central part (residues 5-188) of HspB1. Both the wild type HspB1 and its K141Q mutant formed large oligomers with apparent molecular weight ∼560 kDa. The R140G mutant formed two types of oligomers, i.e. large oligomers tending to aggregate and small oligomers with apparent molecular weight ∼70 kDa. The wild type HspB1 formed mixed homooligomers with R140G mutant with apparent molecular weight ∼610 kDa. The R140G mutant was unable to form high molecular weight heterooligomers with HspB6, whereas the K141Q mutant formed two types of heterooligomers with HspB6. In vitro measured chaperone-like activity of the wild type HspB1 was comparable with that of K141Q mutant and was much higher than that of R140G mutant. Mutations of homologous hot-spot Arg (R140G of HspB1 and R120G of αB-crystallin) induced similar changes in the properties of two small heat shock proteins, whereas mutations of two neighboring residues (R140 and K141) induced different changes in the properties of HspB1.


Assuntos
Proteínas de Choque Térmico HSP27/genética , Mutação , Doenças do Sistema Nervoso Periférico/genética , Cromatografia em Gel , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...